6] bloqg.ezvizi.com

. Web Applications. Backend for web
apps with CRUD operations.
2. Mobile Apps. Backend support for
mobile app data needs.
3. Public APIs. Offer services to third-
party developers.
4. Integration. Connect different
systems or services.
5. Content Delivery. Distribute content
to various platforms.
6. Data Storage. Backend for apps
needing database access.
7. E-Commerce. Manage products,
orders, and user accounts.
8. Social Media Platforms. Handle user
data, posts, and interactions.
9. loT Devices. Communicate with and
manage loT devices.
10. Legacy System Interface. Modern
interface for older systems.

POST /users HTTP/1.1
= ®

HTTP/1.1 200 OK

. Over/Under-fetching: Fixed data

returns

2. Multiple Endpoints: More requests
for complex data

3. Versioning Issues: Changes can
break clients

4. Limited Flexibility: Fixed data
structures

5. Performance: Multiple trips for
complex data.

6. Stateful Limitations: Not ideal for
real-time operations

7. Nested Resource Complexity:

Harder to manage nested data

. Stateless: Scales easily

. Cacheable: Improved performance

. Uniform Interface: Standardized use

. Scalable: Supports high request
volumes

. Interoperable: Works well with HTTP

. Simple: Uses standard HTTP
methods

7. Widely Adopted: Many resources

available

A WON =

D O

*Caching strategies |Part 1) blog.ezvizi.com| ezvz [

1. Efficient: Loads only needed M
data 1.\ Request data

2. Simple: App-driven cache <D 8. Retutn data

6. / Write data
management

2 7. Return data @) [Data in Cache]

—

. Latency on cache miss.
. App handles cache misses.
. Risk of stale data.

w N

s 1. Cache-Aside

_Reduced DB load
. Always fresh data
. Simplified Error Handling

; - M Read data ~
. Consistent response times S 4. 2 Retutn data Sl ———» -
DB

(§ .
1. Request datag 2.®_ Check for data> s 5.7 [Cache Miss]

) 2 Return cached data
. Automated data loading N N < 46. S Return data

Ll
. Latency on cache miss
. Complex cache management

. Risk of stale data . App Server|
. Additional overhead

. Resource consumption - .\ 2. Read'Th rough

. Ensures data consistency 2. / Write data synchronously - es>
. Reduced risk of data loss 1.\ Request to write data

. Immediate error detection .] >
. Fast subsequent reads &, o Write successful

O WON_2JOBROWON -

3. ¥ Acknowledge write g

AOWON -

2. / Write data synchronously s
o

Slower write operations
. Increased storage load

. Resource overhead App Server
. Potential cache churn

Client 5. ¥ Acknowledge write

A OWON -~

. Minimizes cache churn
. Quick write operations
. Efficient cache space usage
. Good for read-intensive apps g o Write successful

1. ¥ Request to write dat 4.% Invalidate the data
|l

DB Cache

2. / Write data

»

. Delay in initial read after write D! _3- ¥ Acknowledge write
. Added management complexity

. Risk of stale data 4 7S S Write-Around

. Fast write response 1. Request to write d:ta 2./ Wite data g™ X 5. Asynchronous Writetu.

. Batched Transfers , ? =
& § Wi snomeshl 3.7 Acknowledge write —
. Lower Storage Stress D> « < c: 9 -

. Risk of data loss App Server|

. Temporary data mismatch

yAdded syrg complexity _ 5. & <= Write-Behind (or Back)
1.0.0 29 Sep 2023 EZP-001-2

Key Differences:
« API Gateway: Focuses on API request management and processing.
« Load Balancer: Focuses on evenly distributing traffic.
Granularity:

o API Gateway: Offers fine-grained control over API requests.
o Load Balancer : Operates at a broader network level.

Features:

o API Gateway: Comes with a wide range of features tailored for APl management.
« Load Balancer: Primarily deals with traffic distribution and server health.

2. Load Balancer

Primary Role: Distributes incoming
network traffic across multiple servers

ﬂ{/}j] 1. APl Gateway

% Primary Role: Manages and processes
API requests

-

Order Service &
Payment Service &

Payent
Gateway &

C !
DB

Use Cases:

. Microservices architectures

. APl management

. Aggregating responses from
multiple services

. Securing APIs

/" Functions:

. Request Routing 4 : Directs
requests to the appropriate service
based on the API endpoint.

. APl Composition 3% : Aggregates
data from multiple services into a
single response.

. Rate Limiting X : Limits the number of
requests a user or system can make
within a specified time.

. Security @ : Provides features like
authentication, authorization, and
threat detection.

. Caching # : Stores frequently used
data to speed up subsequent
requests.

. Request/Response Transformation

S : Modifies request or response
format as needed.

. Analytics & Monitoring Ml: Tracks
API usage and performance.

. Service Discovery . : Automatically
detects and connects to available
services.

. Error Handling & Retry - : Manages
failed requests and retries if
necessary.

1.0.0 29 Sep 2023 EZP-001-3

Use Cases:

. Ensuring high availability

. Fault tolerance

. Scaling applications

. Managing traffic for large-scale web

applications

/" Functions:

. Traffic Distribution & : Evenly

distributes incoming traffic to prevent
server overload.

. Health Checks % : Monitors the

health of servers and routes traffic
away from unhealthy ones.

. SSL Termination @ : Handles

SSL/TLS decryption, offloading the
task from servers.

. Session Persistence & : Ensures a

user's session remains on the same
server.

. Layer 4 and Layer 7 Load

Balancing * : Can operate at both
the transport (TCP/UDP) and
application (HTTP/HTTPS) layers.

Linux Commands |Part 1

1. File Operations

. 1s B: List directory contents
o Example: 1s -1
. cp Bl: Copy files and directories

o Example: cp source.txt
destination. txt

. mv a2 : Move or rename files and
directories

o Example: mv oldname.txt
newname.txt

.rm & : Remove files or directories

o Example: rm unwanted.txt

. touch & : Create an empty file

o Example: touch
newfile.txt

. cat IR : Concatenate and display file

content

o Example: cat file.txt

6. Package Management T

1. apt-get «a:APT package handling
utility (Debian-based systems)

o Example: sudo apt-get
install package name

2. yum ..: Package manager for RPM-
based systems

o Example: sudo yum
install package name

3. dpkg .. : Package manager for
Debian

o Example: sudo dpkg -i

1.0.0 29 Sep 2023 EZP-001-4

2. Directory Operations &

. pwd | : Print working directory

o Example: pwd

. cd L : Change directory

o Example: cd
/home/user/documents

.mkdir ~ B :Make directories

o Example: mkdir
new directory

.rmdir & B : Remove empty

directories

o Example: rmdir
empty directory

7. Text Processing @.

.grep /@: Search text

o Example: grep "pattern"
file.txt

. sed X : Stream editor

o Example: sed
's/old/new/g' file.txt

. awk B : Pattern scanning and text

processing language

o Example: awk '{print
$1}1' file.txt

3. System Info i

. uname [I: Display system information
o Example: uname -a

. top M: Display system tasks
o Example: top

. df |@: Disk space usage of file
system

o Example: df -h

. free @ : Display memory usage
o Example: free -m

. ps & : Display process status

o Example: ps aux

. Help & Output _

1. man %: Display manual pages
o Example: man 1s
2. echo): Display a line of text

o Example: echo "Hello,
World!™"™

4. Networking &

.ping % :Send ICMP
ECHO_REQUEST to network hosts

o Example: ping google.com
.netstat & M : Network statistics
o Example: netstat -tuln

.ifconfig @ %£: Display or configure
a network interface

o Example: ifconfig ethO

. ssh J: Secure shell client (remote
login program)

o Example: ssh
user@hostname

. SCDP aa: Secure copy (remote file copy
program)

o Example: scp file.txt
user@hostname: /path/

9. Process Management

1. ki1l ¥ : Terminate processes

o Example: ki1l -9 12345
(where 12345 is a process ID)

'6]blog.ezvizi.com

. tar B: Tape archiver

o Example: tar -czvf
archive.tar.gz folder/

.gzip ¥:Compress or expand files
o Example: gzip file.txt
.gunzip ¥ m:Decompress files

o Example: gunzip
file.txt.gz

. zip @ : Package and compress files

o Example: zip archive.zip
filel.txt file2.txt

.unzip @ m: Extract compressed

files in a ZIP archive

o Example: unzip
archive.zip

10.Permissions @

1. chmod %, : Change file mode bits

o Example: chmod 755
script.sh

2. chown ¥ : Change file owner and
group

o Example: chown
user:group file.txt

3. chgrp = :Change group ownership

o Example: chgrp group
file.txt

diagram.py + X

CF

=from

from
from
from
from
from

“Frum

M-

7]

y 335 APS
diagrams
diagrams
diagrams
diagrams
diagrams
diagrams
diagrams

GW, L, A, D
import Diagram, Cluster
.aws.network import CF
.aws.storage import S3
.aws.mobile import APIGateway
.aws.compute import Lambda
.aws .database import Aurora
.aws .database import Dynamodb

Diagram("Microservice”, show = True):
with Cluster("UI"):
cf = CF("CloudFront™)
s3 = S3("S3")
with Cluster("Compute"):
api = APIGateway("API Gateway")
1 = Lambda("Lambda")
with Cluster("DS"):
a = Aurora("Aurora")
d = Dynamodb("DynamoDb")
cf >> s3
cf >> api
api >> 1
1> a
1L>d

Ul

Clmx!:rml:

63blog.ezvizi.com

oS

Compute

E8

Aurora

y

Lambda

API Gateway

Microservice

6l bloc eZVIZI com

2. Webhooks API Architecture style . Real-Time Notifications. Immediat€
alerts for events like new posts.

2. Cl/ICD. Trigger builds, tests, and
deployments on code changes.

3. E-Commerce Updates. Notify on
order placements, payments, or stock
changes.

4. CMS. Alerts on content changes.

5. Social Media Integration. Updates on
posts and interactions.

6. Monitoring & Analytics. Alerts for
system or security issues.

7. Chatbots. Notifications for new
messages.

8. Payments. Status updates on
transactions.

9. loT Device Communication. Send
data when specific conditions are met
by loT devices.

10. Collaboration Tools Integration.
Notify on task updates or new
messages in collaboration apps.

git push

Webhook POST

. Real-Time Notifications: Immediate
alerts without polling

2. Event-Driven: Supports dynamic,
event-based interactions.

3. Reduced Server Load: Sends data
only on events.

4. Configurable: Tailored to specific
events

5. Simple to Use: Generally
straightforward implementation

6. Asynchronous Operations: Non-
blocking data transfers.

7. Scalable: Adapts easily with growing

needs.

. Security Concerns: Public endpoints
may pose risks if not secured

2. Error Handling: Challenges with
endpoint failures or errors

3. Latency Issues: Network delays can
affect real-time nature

4. Resource Use: Each call consumes
server resources

5. Debugging: Complexity increases
with third-party services

6. Limited Filtering: Some providers
may lack detailed options

7. Ordering: No guaranteed sequence

for events.

% Load Balancing Methods|Part 1 IRO® A R10J.€2Vizi.com
@ 2. Sticky Round Robin)3. [’ @ Weighted Round Robin 4. & +# IP Hash 5.[] # Generic Hash 6. © v Least Connections _7. ® v Least Time

%\) Static % P static Static Static
o5 g o5

o5

1. @2 Round Robin

Static

]

s1 s2 s3

latency = 10ms latency = 15ms

O]

s2 K]

s2 s3
conn# = 50 " conn# = 20 “conn# = 80

-

N+ upstream backend {
server s1.dmn.com;
server s2.dmn.com;
server s3.dmn.com;

=3 Weight =2 Weight =1l latency = BSms

s2

s2

N

N+ upstream backend {
least_time header;
server s1.dmn.com;
server s2.dmn.com;
server s3.dmn.com;}

N upstream backend {
least_conn;
server s1.dmn.com;
server s2.dmn.com;
server s3.dmn.com;}

N upstream backend {

hash $request_uri;
server s1.dmn.com;
server s2.dmn.com;
server s3.dmn.com;}

N upstream backend {

server s1.dmn.com;
server s2.dmn.com;
server s3.dmn.com;

upstream backend {
ip_hash;
server s1.dmn.com;
server s2.dmn.com;
server s3.dmn.com;}

upstream backend {
server s1.dmn.com weight=3;
server s2.dmn.com weight=2;
server s3.dmn.com weight=1;}

sticky cookie srv_id expires=2h
domain=.dmn.com

e 1. Easy Setup @ : Minimal configuration a ; . IR
2. Even Distribution @ : Suitable for e eSS ISes auliaiains

testing.

3. No Monitoring Needed M : Rotates
through servers.

4. Predictable G : Can anticipate server
handling.

. Adaptive Distribution [l: Suits servers
with different capacities.
2. Flexibility © : Adjusts weights as
server performance changes.
3. Efficient €& : Maximizes resource
utilization without overloading.

1. Versatility & : Hashes on diverse
inputs, including text, variables, or
combinations like IP-port pairs or
URIs.

2. Uniform Distribution < : Aims for
even distribution across servers.

. Session Persistence ; : Clients
consistently directed to the same
server.

2. Predictable Distribution < : Based

on client IP hash, ensuring even load.

user session data.

2. Better User Experience # : No
session timeouts or data loss.

3. Simpler App Design %< : Assumes
user requests hit the same server.

1. Adaptive # : Directs traffic to less-
busy servers.

2. Efficiency & : Maximizes server
utilization without overburdening.

1. Fast Responses # : Prioritizes
quickest servers.

2. Dynamic Adaptation & : Adjusts
based on server response times.

1. Server Overload Risk A : Can push

servers to overload if they're already 1. Potential Imbalance -[-: Uneven load - S : o : 1. Monitoring Overhead M: Requires
heavily loaded. distribution. 1. Complexity $X : Requires monitoring & I(;lr:rclgesdefhemblhty %: Hard to adjust & g;emcrzilgﬁ'% has.r? feu ?:é'{gi el 1. Delayed Reaction @ : Might not continuous tracking of server
2. Requires Similar Server Capacity *\ : 2. Scaling Issues B4: Challenges when and weight adjustments. 2 Imbalancepkisk et oxPotentialimbalancesa “Hash account for sudden server load spikes. latencies.
Best when all servers have roughly the adding TS5 SR . : 2. Potential Imbalance A : Incorrect : miaht qet more trafﬂc.: if certain IP : sollisionesenoankast fu.nctions - 2. Potential Overhead Ml: Requires 2. Fluctuation Risk A : Rapid changes
same capacity. 3. Server Failure Impact & : Disruptions weights can lead to overloads. rar? esgare more active Kew distribu’iion monitoring of active connections. in response times can lead to frequent
3. Content Uniformity Needed B : if a sticky server fails. 9 : . server switches.

Requires all servers to host the same

content.
@ 1. Testing Environments ¢ : Balanced @ 1. Web Apps with Sessions & :

request distribution for testing. Maintains user carts and preferences.

. Stateful Applications & : Where 1. User Experience " : Ensures users

. Custom Inputs %< : Hash based on

1. Varying Server Capacities B :

2. Stateless Applications S : For 2. Authentication Systems @ : Keeps 1. Mixed Server Capacities : When session data needs to be retained. e . . . § get the fastest server response.
) . . . = . . specific application data or headers. Balances load in mixed-capacity - T .
independent, session-less requests. users logged in across requests. servers have varying resources. 2. Geo-specific Content © : Serving . . . : 2. High Demand Applications - : For
o S . .) e . 2. Dynamic Environments ¥ : Where environments. . . . ;
3. Uniform Server Capacities * : 3. Multi-step Forms B : Remembers 2. Dynamic Environments ¥ : Adapting content based on client's geographic - S - S e services like video streaming where
o : ’ inputs for distribution change 2. High Traffic Sites : : Distributes large
When all servers have similar data across form pages. to changing server performance. location. P— volumes of requests effectivel latency matters.
resources. 4. Streaming Services - : Consistent 3. Traffic Prioritization (2 : Directing more 3. Security & Monitoring : Easier q . - . . Al iy y- 3. Variable Server Performance N :
: g 3 R y : ' . - z : 3. Cache Distribution m : Ensuring 3. Real-time Applications - : Where : ;)
4. Microservices # : Even distribution server connection during streams. traffic to higher-performing servers. tracking and management of client Balances in environments with

cached content is evenly distributed. quick response times are crucial.

across stateless services. sessions.

5. Online Gaming - : Tracks player
states and scores consistently.

fluctuating server speeds.

Note: In NGINX, least_time combines the lowest number of active connections with the lowest average latency

1.0.0 6 Oct 2023 EZF-002-2

HTTP Status Codes

1xx: Informational S

6]blog.ezvizi.com

EZVIZI

4xx: Client Errors

Continue g : Initial request received; client can continue.
Switching Protocols G : Server switching as client requested.
Processing X : Request processing; no response yet.

Early Hints 9: Likely final response with header fields soon.

2xx: Successful v

OK OK : Standard response for successful requests.

Created " : Request fulfilled; new resource created.

Accepted G : Request accepted but not yet completed.
Non-Authoritative Information i: Response from another source.
No Content ©:Request processed; no content returned.

Reset Content G : Request processed; client should reset view.
Partial Content X: Partial resource delivered due to range header.
Multi-Status [Ml: Multiple status responses for WebDAV.

Already Reported «:Enumeration has already been given (WebDAV).

IM Used G : Request fulfilled with instance manipulations.

3xx: Redirection -

Multiple Choices @ : Multiple options available.

Moved Permanently = : Resource moved permanently to a new URL.
Found & : Resource temporarily moved to a different URL.

See Other %8: Response found under another URL; use GET.

Not Modified [G : Resource unchanged since last request.

Use Proxy %% :Access resource via provided proxy.

Temporary Redirect = : Temporary redirection to another URI.
Permanent Redirect = : Permanent redirection to another URI.

5xx: Server Errors

Internal Server Error - :Generic server error.

Not Implemented : Server can't fulfill request.

Bad Gateway #7: Invalid response from upstream server.
Service Unavailable —: Server temporarily unavailable.
Gateway Timeout @ : Delayed response from another server.
HTTP Version Not Supported :Unsupported HTTP version.
Variant Also Negotiates G : Configuration error in server.
Insufficient Storage m:Can't store needed data. (WebDAV)
Loop Detected @ : Infinite loop detected. (WebDAV)
Bandwidth Limit Exceeded M: Bandwidth limit surpassed.
Not Extended --: Extensions needed for request.

Network Authentication Required f@: Client needs network authen.

Unknown Error :Unexpected server response.
Server Is Down —: Origin server down.

Timeout @ : Server response delay.

Origin Unreachable 7%: Can't reach origin server.
Timeout @ : Request delay.

SSL Handshake Failed (@: SSL handshake failed.
Invalid SSL Certificate :Invalid SSL certificate.
Railgun Listener to Origin za: Railgun error.
Service Overloaded A : Service is overloaded.
Site Frozen ¥ : Site administratively frozen.
Unauthorized f@: Unauthorized access.

Network Read Timeout '@ : Network read timeout.
Network Connect Timeout @ : Client-side timeout.

Bad Request W : Request can't be processed.

Unauthorized @: Missing or invalid authentication.

Payment Required @ : Payment needed for request.

Forbidden € : Server refuses to respond.

Not Found <: Resource isn't available.

Method Not Allowed - :HTTP method isn't supported.

Not Acceptable W :Response can't match the list of acceptable values.
Proxy Auth Required @: Client must authenticate with proxy.
Request Timeout @ : Server waited too long for request.

Conflict A : Request conflicts with current state.

Gone < : Resource was available but isn't now.

Length Required : Request needs Content-Length header.
Precondition Failed : Server doesn't meet request preconditions.
Payload Too Large B :Request size exceeds limit.

URI Too Long “ :URI longer than server can interpret.

Unsupported Media Type : Media type isn't supported.

Range Not Satisfiable W : Can't deliver requested range.
Expectation Failed : Server can't meet Expect header requirements
I'm a Teapot & :April Fools' joke; not used in real web communication.
Page Expired X: Previously valid page has expired.

Method Failure/Enhance Your Calm WN:

Method failure or rate limiting.

Misdirected Request

Request was directed at a server that can't produce a response.
Unprocessable Entity

Request structure is correct, but semantics are wrong. (WebDAV)
Locked (@ : Resource that's being accessed is locked. (WebDAV)
Failed Dependency

Request failed due to a previous request's failure. (WebDAV)

Too Early @ : Server won't risk processing a possibly replayed request.
Upgrade Required 1 : Client should switch protocol.

Precondition Required ': Server requires request to be conditional.
Too Many Requests W:

Client sent too many requests in a given time frame.

HTTP Status Code W : Unofficial status code.

Headers Too Large “ :Request headers size exceeds server limit.
Login Time-Out @ : Session has expired.

No Response W : Server returns no info and closes connection.

Retry With @ : Request should be retried after performing an action.
Blocked by Parental Controls @@

Blocked by Windows Parental Controls.

Legal Reasons -|-: Legal issues prevent resource availability.

Client Closed Connection Prematurely WN:

Client closed connection before server response.

Too Many Forwarded IP Addresses WN:

Too many IP addresses in the "X-Forwarded-For' header.

Incompatible Protocol :Incompatible protocol version.
Request Header Too Large ‘. :Request header is too large.

SSL Certificate Error :Problem with the SSL certificate.

SSL Certificate Required (@ : Client must provide an SSL certificate.
HTTP to HTTPS : Client sent an HTTP request to an HTTPS port.
Invalid Token : Invalid token provided.

Token Required/Client Closed WN:

Token is required or client closed the connection.

1.0.0 9 Oct 2023 EZF-002-3

Fundamental Latency Metrics to Remember

Operation Description Time in ns Time in ms Software Example Hardware/Networking Example

The time it takes to access data
from the fastest, closest cache in
a CPU.

8] cache
reference

Accessing a local variable in . .
GCC-compiled € code. Reading from L1 cache of Intel Core i7.

U 2RIy [ITEUITEE] i i Mispredicted branch in a Java
CPU incorrectly predicts the next . Branch misprediction on AMD Ryzen.
. . app due to JIT optimization.
instruction to execute.
The time to access the secondary
cache, which is larger but slower

X Branch
misprediction

L2 cache Function call overhead in Accessing L2 cache of Qualcomm

reference — Swift. Snapdragon.
a Mutex The time to ensure exclusive Acquiring|lock using
access to a resource in concurrent . Semaphore operation on ARM Cortex-A.
lock/unlock . stdzmutexin C++.
programming.
CENVET NN ULI A The time to access data from the Fetching from Corsair Dominator

Accessing array in Go.

reference main system memory (RAM). DDR4 RAM.

3 Compress 1 The time to compress data for Compressing JSON with
o o B 0.002 \
kB with Zippy efficient storage or transmission. Google's Snappy.

[Read 1 MB The time to read a large chunk of 0.01 Buffering video in VLC Media Transfer in G.Skill Trident Z DDR4
from memor data from system memory. : Player. RAM.

Compression on NVIDIA Tegra chip.

§Send YA CEOZIE® The time to send a small amount 0.0016 Sending message using Transmitting over Cisco 10 Gbps
10 Gbps of data over a high-speed network. ’ gRPC. switch.
E)ssD 4kB

Random Read

The time to read a small, non-

sequential chunk of data from an 0.02 Loading config in Node.js.

SSD.
The time to read a large,

sequential chunk of data from an 1000000 Loading assets in Unity.

SSD.
The time for a data packet to travel
to a destination and back within 500000
the same data center.

Accessing Samsung 970 PRO NVMe
SSD.

&’ Read 1 MB
from SSD

Reading from Kingston A2000 NVMe
SSD.

E&Round trip in
datacenter

DB inM DB . .
A |rAWt;ngo on Packet round trip on Juniper switch.

Read 1 MB squ:EttilaTir:Ean:z(fj ;altzr?;‘m s 5000000 Loading image in Adobe Reading from Seagate Barracuda
from disk Photoshop. HDD.

traditional spinning disk.
@ Read 1 MB The time to download a large . .)
chunk of data over a standard 10000000 Streaming segment in Netflix.
broadband connection.

The time for the read/write head of

QDisk seek a HDD to move to the locationofa 10000000 Searching record in SQLite. Seek on Western Digital Blue HDD.
specific piece of data.
The time for a data packet to travel
@ UL [Rfs & from one continent to another and 150000000
back.

Downloading over Netgear 1 Gbps

from 1Gbps router.

Accessing WordPress site Round trip over Verizon's

round trip in Europe from US. international link.

it Commands Jeur RO bog savscom | (@

y

Action & Description

Git Command

Git config: Set

username and email.

git config --global user.name "Alice Smith"
git

config --global user.email "alice.smith@example.com"

Git init: Initialize a new

repository.

git init my-web-app

Git clone: Clone a

repository.

git clone https://github.com/alice/my-web-app.git

Git status: Check file

status.

git status

Git add: Add file to
staging.

git add index.html

Git commit: Commit

changes.

git commit -m "Added homepage.

Git push: Push

changes to remote.

git push origin master

Git branch: Create a

new branch.

git branch feature-navbar

Git checkout: Switch to

a branch.

git checkout feature-navbar

Git merge: Merge a
branch.

git merge feature-navbar

Git pull: Pull latest
changes.

git pull origin master

Git log: View commit
history.

git log

Git show: Check last

commit details.

git show

Git diff: Check
differences.

git diff

Git tag: Tag a commit.

git tag v1.0

Git rm: Remove a file.

git rm old-file.txt

Git stash: Temporarily
save changes.

git stash

Git reset: Undo last

commit.

git reset HEAD~1

Git revert: Undo a

specific commit.

git revert commit_id

Git remote: Check

remote repositories.

git remote -v

Git fetch: Fetch
changes without

merging.

git fetch origin

1.0.0 9 Oct 2023 EZF-002-5

abh wWwN

~N O

{ data { profile { id name username } order { SKU
name price available } } }

. Flexible Queries: Request specific

. Unified Data RetrievaII

NoSQL-
User Profiles

ﬂ;;;D
Orders Service
AP| Gateway

data

. Single Endpoint: Unified access point
. Strongly Typed: Predictable results

. Introspection: Discoverable schema

. Real-time Data: Supports

subscriptions

. Evolution Without Versioning
. Batching & Caching: Efficient data

retrieval

6l blog.ezvizi.com

. Dynamic Data Retrieval. Fetch varied

. Mobile Applications. Optimize data

data without backend changes.

for bandwidth & reduce requests.

. Single Page Applications (SPAs).

Real-time data without page reloads.

. Data Source Integration. Aggregate

data from multiple sources.

. Social Media Platforms .Manage

nested comments, posts, profiles.

. Content Management (CMS). Serve

flexible content structures.

. E-Commerce. Fetch product data,

reviews, profiles.

. Real-time Apps. Support chat apps or

live score updates.

. Development Tooling. Benefit from

API introspection.

. Decoupled Architectures. Frontend

requests data without backend
changes.

. Complexity: Can be overkill for simple

APlIs.

. Performance Concerns: Potential for

resource-intensive queries

. Caching Challenges: Traditional

HTTP caching might not work

. Rate Limiting: Granular rate limiting

needed

. Learning Curve: Different from REST
. Overhead: Potential overhead for

simple queries

. File Uploads: No native support
. Error Handling: Always returns 200

OK status.

4

Cloud Infrastructure

ek majority of Netflix's cloud infrastructure

Microservices Architecture

~2000+ developers

~100+ teams

{. paid subscribers: ~238M

microservices | . ~1000+ microservices

/ I'. spring
' \ boot

.' . Development
| ? { &, Java

d-
Pl .
P, -

T f

5 -"-\._J_- lI| |
. ¥

|
|

Android .'

K Kotlin
Swift

i0S)

[6 blog.ezvizi.com l*ﬂ

Spinnaker
@ Jenkins

Configuration Management

ARCHAILS

@ Atlas Time-series monitoring
‘L‘f 3 I'l Monitoring & Observability
I |
-, - Logging systems

Tracing tools |

Data Storage & Databases

\
\ APl gateway 'f-{E.T,Fb'E

g , , ETFLI
. Service Discovery i

_MySQOL
_ § CockroachDB

II _ cﬂssﬂ}r'ﬂrn
| NoSQL databases / .
| \

| ."I H‘-__ Amazon DynamolDB

Relational databases

[

Amazon 53
. Content/Streaming /" —_
\ :' % Elastic
| mggr Transcoder

- elasticsearch

' Search engines

| Caching "= EVCache
§g kafka

Stream processing systems

it
[
&Flink

AFACHE

Spark’

Batch processing systems

| Big Data & Analytics

amazon
REDSHIFT

Data warehousing solutions -

What It's Built On

i i
. now Tl ,
\ aﬁsb 9 dKe
+14
++jl|__"|:l-

Data Visualization R R

()
AL o T
|'I1|]|]:I1EE| Resilience & Chaos Engineering
O git

GitHub

¥ Terraform
i slack .
* Jira H Collaboration & Communication |

“ Version Control

Y

)
al
Infrastructure as Code

% Confluence / |
Mradle Build Automation & Dependency Management J

@ nebulo

Enhance the build and release process |

https:/netflixtechblog.com/ &

https://aws.amazon.com/solutions/case-studies/innovators/netflix/ &

httpsy/eithub.com/Metflix)

1.0.0 EZF-003-2 S5ep 30 2023

| | Real-time analytics D) druid
_| | =T
|||I | Enhance data performance ICEBERG{Y
|
N v
'\ Machine Learning TensorFlow
| NETFLIX
|IIII ||
| Open Connect
| coN / s
/ | \ .l
/ / ” \ CloudFront
| i
;": | Amazon ELB
.} I || ; Load Balancing :,s NETFLIX
A . Networking / _£UUL
1 Sources [‘ |
) | Service Mesh (@ envoy

Disclaimer: The Metflix tech stack listed is not complete; this is only the information
that is known. It's not guaranteed that the data here is the most recent.

;
|

| Scripting & Automation

3

python

| Incident management

s

-'\u
\H"_
|

DagerDuty

Scheme/Protocol Example mailto

User Information (optional) Example ezvizi.com@gmail.com &

| Authority f Host/Domain Name

I * Port (optional)

scheme:[//[user:password@]host[:port]][/]path[?query] | = path /products/page1
syntax [#fragment] — _ e .
Query (optional) Example subject=Ad Placement Request &

Fragment/Anchor (optional)

|
| mailto:ezvizi.com@gmail.com?subject=Ad

I
| | Placement Request?
' &cc=ezvizi.com@gmail.com&bcc=ezvizi.com@

,,{ URI (Uniform Resource |dentifier) | \ B T

|\ Purpose To identify a resource

| Persistence Can be either persistent or transient

/ | Definition A generic term for any type of name or address referring to a resource.

'{ 6 blog.ezvizi.com]

o

“ 3 Scheme/Protocol Example https
.' I."f User Information (optional) Example user:password@
. ' Authority / Host/Domain N Exampl evizi.
j scheme:[//[user:password@]host[:port]][/Jpath[?query] lllf, kit Siieetiobha bl il ok weezlcom$
[Hfragment] f \ Port (optional) Example 8080
| Iu": m
-' \ Path Example /products/page]

| | [Query(optional) Example | Zitem=123

syntax | |
— h / | . Fragment/Anchor (optional) Example | #section2
N M |I I, -
by A . ,' I, https://user:password@www.ezvizi.com:8080/ P
".I i S .' | Example products/page1?item=123#section2
W\ | URL (Uniform Resource Locator) || o . - - -
L\ \ Definition A specific type of URI that describes where a resource is located and how to access it.
II". " I':I”x Purpose To locate a resource
'. | Persistence Typically transient; can change if the resource moves
I'lll .I'-.l.lll R
| —{ https://www.linkedin.com/in/ildarkhanov/ @ l
~ syntax urn:<namespace-identifier>:<namespace-specific-string> Example urn:isbn:0451450523
'H:ﬁ , / A specific type of URI that provides a persistent
x ." identifier for a resource without implying its location or
* ~ Definition how to access it.

=—[URN (Uniform Resource Name) 1'
| Purpose To name a resource uniquely

1\
|I X
1

. Persistence

._‘.L

Meant to be persistent; doesn't change even if the resource's location changes.

HR"““[1.0.0 EZF-005-4 Oct 5 2025

Dedicate a database to each service for decoupling

and data consistency.

15. Database Per Service |-

\
kafk
ATKO
II"-.lI
SR R - Communicate asynchronously between services . . \
H: R a b b ItivViQ) 16. Event-Driven Architecture |—__
Regularly backup data and test disaster recovery processes . x H"g
1 17.Backup & Disaster Recovery |[— \
. : I-I'l"._ IIII'.
A\ \
Each microservice should have its own build and deployment pipeline build % % \
comprehensive testing for each service test 5 Automate % A& ".IH
i . k'*.,'_. III"., '|
deployment processes % ik "5'
ensure development teams own and support changes ."II 18. CI/CD & DevOps Practices]_“—_““““m h’y 1
from development to end-of-life “ I""x Voo
l'-l' ',III III

{ Glblog.ezvizi.com] N AR

A\l
[https:ﬁwww.linkedin.cnmlin!ildarkhanﬂw in F_ v % A%

'-. "1‘. IIH'“. II'. | |
docker ;

i '-. \

g TG

L1 i1 1
W '.'l| L] | 1 I
-]

b 3 R
™ 4 b ! ||I |I |
EmE) AL OO 1
, 5 1 1
N y W1
b ." '.II 11
5

e N \, \ "'.I II'.I'u |
kubernetes « \

5'\. lll'- (! II| II| Il
L Y W R TR
[LAY
l

19. Containerization] e

Each service should cater to one business capability

'-.__ '-.IIII ".I II'. I',I'I
l 20. Orchestration]— S R

{ 21. Single Responsibility Principle]_ —

e ,-'II;'III |
Design for scalability [T I,.'fl.',|'||'|'
l 2P s tateless eSS — /M
/ ."I I," .'Illl
/ | |'I I||I
.": | II |
"-'.-.:.:, .,."' J IlI II III
k- HYSTRIX 'y I
: CEFEMD YOUR AFF .f._,.f II,-'II I|' Ill I|I|
. % y Fd ;- III,' II'I IIllll
{___) | Tools Prevent cascading failures Circuit Breakers /] .".'I
e_0O .- \ [
| | . 3§ III I|I III
Resilience4j : \ s ;f]
I S e / / I|||
KubornaticBetius ;} 23. Resilience & Fault Tolerance] S i e
..-'Ill / / II.' I|I II
Design services to handle failures gracefully | J o ."I |
i .-"I |.'I (|
,-’;l; I.-"'II I."III |II I'II
authentication f i A
%, 3 .-"ll I-" .'I IlI
data encryption | A H /o
"\ . ______;_f,,..--*' / .-“f II.' II.
API 4 24. Security } £ & 0
network security _,f'f / .-'I
i : f | III
Keep code within a service at a similar level of maturity [. A /
l 25. Code Maturity [
/ [|
;“I .l'|l I|III
wagger. y
&8 Tools Maintain up-to-date APl documentation . /|
26. Documentation | /]
.‘Illllll IIII
.f’rf ."':I
9 Prometheus Pl
\ Tools [O A
o) G ro fG nga | | 27.Monitoring & Alerts | —

[1.0.0 EZF-003-3 Sep 30 2023 }

Deploy and scale each microservice separately

\ 1. Independent Deployment and Scalability]

f, Model services based on business domains to ensure
f_, . , . alignment with business capabilities.
| 2. Dbomain-Driven Design (DDD)
IIIIII_.' 4 #
f Minimize inter-service dependencies and group
fi , . . related functionalities.
[o _—1 3. Loose Coupling & High Cohesion |
J,.’ ;”' ; URI versioning
x x - o Ensure older versions of services continue to function / header versioning
_— 4. APl Versioning & Backward Compatibility |
S > . parameter versioning
f ." _."'l - :
|III | l."l:lll ; /
7 G CONSUL
|III |'I -'Irl .-'"'ll; v,
(1) o
||I II, II" II| NETFLIX
I|II I.'II II."II .f'; Tools Ill E U R E KA
o ; .
|I ,'I I / T._
I| IIl .'I / / I
kubernetes
I ."'I a e >. Service Discovery]‘II u Kubernetes service discovery
I| III II. / . Vs |III ,
I/ . Don't use hardcoded values
|II |III -'III [£ f
II II |I f _."rJ :
III ' Iu' !
|I |I .'I [f Spring Cloud Contig
Fal o i
II 'I III 'I /
i/ . _ . Tools | .
I/ | 6.Centralized Configuration Management :-. @®-:: CONSUL
II I| | / / o 2
1 | / e
(| |I i o

I kubernetes

i/ health endpoints for monitoring service health Tools ’ .
i/ / 1 7.Health Checks ., ®-:: CONSUL
||||I| .'ll / ’._’i__.--""---- I"." .
Q:Illll .'II .f.-": - = :

Trace requests across services for diagnostics

A,
@ JAEGER
“?E_J,E‘uif- 2
o
| I|I ll"-. l"'_- o
|I| II | l"._ l-'«.

5_%_________4[8. Distributed Tracing]

Tools ,f'- &
n ZIPKIN
i\ } o
|||I 'lI II"., % g
| | \ s
IR N\ - .] Break monolithic frontend into smaller, more manageable pieces
IR ———| 9. Micro Frontends |
1k e “,
40 %
(1 |I I". .
|II |I \ .
II \ IIII II'-. H'"“H Saga
IR \ = .] patterns
A\ ——{ 10. Data Consistency] eventual consistency
|II II'. H'.I x
III II, I'lI III"-.Ill il .
IR m» elasticsearch
|I III |III I"-I"I |
||II '|II I'.IIIII I"'.,'\l.\l ||'|III . | t h
o\ \ | -' ogstas
I|I ',I \. ELK stack |'I g
Ilu Il'u IIII". .xx “ r|%
|I I'| "'1 % ; |'I |II -
X K kibana
[II"-. : e | II"';
1 11. Centralized Logging llk |
I|I IIII lll"'-.__ :.\ g ray I ®g
I",I I"nl x easier debugging
|IIII I"llll .““'"'-.H
'III I',IIII 1'\. i

|\ A Kong
II".I H -]

3 Route requests, handle authentication, single entry point
- 1 12. API| Gateway J NZELTJFLI:III)_{
|IIII Il'.llll
L\
L OAuth 2.0
\ \
I". '1._1". f.r“')
\ & Authentication
I'”u. R | .'II H"x_
—[13. Authentication & Authorization]L Authorization service level
I".I II .
'x.‘\ \ensure only authentic users access services

Protect services from excessive requests
.'H"“-I 14. Rate Limiting & Request Caching]3 reduce load on services

ok
CI iE nt Reads/Writes m
— - .
I
1

i

]
Replication
i

|
1
Client ‘“__.Reads_____ﬁ

6]blog.ezvizi.com

Networking & Content Delivery: AWS, Azure, GCP, OC

EZVIZI @

< —>

Estimated degree of Match (1..5)

1 = "Not a Direct Match, but Closest Available"
2 = "Somewhat Similar"

3 = "Moderately Similar"

4 ="Very Similar"

5 ="Almost Identical"

1.0.0 17 Oct 2023 EZP-004-3

https://www.linkedin.com/in/ildarkhanov/

Networking &

Content DeliveryService N\

aws

S g’)
el 4

O

Google Cloud Platform

Degree of Match (1..5) to AWS

ORACLE

Cloud Infrastructure
Degree of Match (1..5) to AWS

1. APl Management Service Amazon API Gateway “‘*i;”) Azure APl Management 5 \-‘ Cloud Endpoints 5 ﬂmj API Gateway 5
2. CDN Amazon CloudFront m Azure Content Delivery Network (CDN) 5 “:' Cloud CDN 5 @ Content and Experience Cloud 3
3. Domains and DNS Amazon Route 53 Azure DNS 5 I—E Cloud DNS 5 @ OCI DNS 5
4. Secure access to apps {} AWS Verified Access > Azure Active Directory 3 g Identity Platform 3 No direct equivalent in OCI -
5. Virtual Networks Amazon VPC -« Azure Virtual Network 5 I::I: Virtual Private Cloud (VPC) 5 @D Virtual Cloud Network (VCN) 5
16. Application networking Amazon VPC Lattice 7 Azure Virtual WAN 1 No direct equivalent in GCP - No direct equivalent in OCI -
7. Service mesh {fj AWS App Mesh s\.r} Open Service Mesh on AKS 4 '*Il Traffic Director 4 No direct equivalent in OCI -
8. Services discovery (DNS) AWS Cloud Map CC. Hashicorp Consul Service on Azure 2 Service Directory 4 No direct equivalent in OCI -
9. Network connectivity G}_ﬁ\b AWS Direct Connect } Azure ExpressRoute 5 | il- Cloud Interconnect 5 C,? FastConnect 5
10. Premium networking @ AWS Global Accelerator h Azure Front Door; Cross-region LB 3 |/ «-Network Service Tiers, Premium Tier 3 No direct equivalent in OCI -
11. Private link AWS PrivateLink /@ Azure Private Link 5 |~ Private Service Connect 3 @ Service Gateway 4
12. Private mobile network AWS Private 5G Azure Private 5G Core 3 No direct equivalent in GCP - No direct equivalent in OCI -
13. Network connectivity ‘ AWS Transit Gateway @ Azure Virtual WAN 4 Network Connectivity Center 4 @ Transit Routing: VCN w/ Transit Gateway 4
14. Network connectivity &=y AWS VPN E Azure VPN Gateway 5 -o-I Cloud VPN 5 ‘@’ VPN Connect 5
15. Load balancing Elastic Load Balancing @ Azure Load Balancer 5 'fF'u Cloud Load Balancing 5 @é Load Balancing 5
|

	EZF-001-1-REST
	EZP-001-2-Cache-small
	EZP-001-3-APIGW-Cache-2
	EZF-001-4-2-Linux
	EZF-001-5-D-2
	EZF-002-1-2-Webhooks
	EZ-002-2-400
	EZF-002-3-HTTP-STATUS-CODES
	ezf-002-4-2
	EZF-002-5-GIT-COMMANDS
	EZF-003-1-3-GraphQL
	EZF-003-2-Netflix-What It's Built On
	EZF-003-3-Comparison of URI, URL, and URN
	EZF-003-4-27 Microservices Best Practices
	EZF-003-5-M-S-replication
	EZF-004-2-networking-aws-azure-gcp-oci

